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Abstract(

This is an extended version of a chapter appearing in Machine Learning: An Arrifical
Intelligence Approach, Volume Ill. R. Michalski and Y. Kodratoff (eds.). Morgan-Kauffman. 1988.

Most research in explanation-based learning involves relaxing constraints on the variables in
the explanation of a specific example, rather than generalizing the structure of the explanation
itself. However, this precludes the acquisition of concepts where an iterative process is implicitly
represented in the explanation by a fixed number of applications. Such explanations must be
reformulated during generalization. The fully-implemented BAGGER system analyzes explanation
structures and detects extendible repeated. inter-dependent applications of rules. When any are
found, the explanation is extended so that an arbitrary number of repeated applications of the
original rule are supported. The final structure is then generalized and a new rule produced which
embodies a crucial shift in representation. An important property of the extended rules is that
their preconditions are expressed in terms of the initial state - they do not depend on the results of
intermediate applications of the original rule. BAGGER's generalization algorithm is presented and
empirical results that demonstrate the value of generalizing to N are reported. To illustrate the
approach. the acquisition of a plan for building towers of arbitrary height is discussed in detail.
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1. INTRODUCTION

Often an expert will. in the course of solving a problem, repeatedly employ an action or

collection of actions. It is an important, but difficult, problem, to correctly generalize this sequence

once observed. Sometimes the number of repetitions itself should be the subject of generalization.

Other times it is quite inappropriate to alter the number of repetitions. This article addresses the

IF important issue in explanation-based learning (EBL) of generalizing to N (Shavlik and DeJong,

1985, 1987b, 1987c). This can involve generalizing such things as the number of entities involved

in a concept or the number of times some action is performed. Generalizing number has been

largely ignored in previous explanation-based learning research. Instead, other research has focused

on changing constants into variables and determining the general constraints on those variables.

In explanation-based learning (Deiong and Mooney. 1986: Ellman. 1987: Mitchell. Keller, and

Kedar-Cabelli. 1986) a specific problem solution is generalized into a form that can be later used to

solve conceptually similar problems. The generalization process is driven by the explanation of

why the solution worked. Knowledge about the domain allows the explanation to be developed

and then generalized.

Consider the LEAP system (Mitchell. Mahadevan. and Steinberg. 1985). The system is shown

V an example of using NOR gates to compute the boolean AND of two OR 's. It discovers that the

technique generalizes to computing the boolean AND of any two inverted boolean functions.

However. LEAP cannot generalize this technique to allow constructing the AND of an arbitrary

number of inverted boolean functions using a multi-inpu- NOR gate. This is the case even if

LEAP's initial background knowledge were to include the general version of DeMorgan's Law and

the concept of multi-input NOR gates. Generalizing the number of functions requires alteration of

the original example's explanation.

Ellman's (1985) system also illustrates the need for generalizing number. From an example

of a four-bit circular shift register. his system constructs a generalized design for an arbitrary

four-bit permutation register. A design for an N-bit circular shift register cannot be produced. As

Ellman points out. such generalization, though desirable, cannot be done using the technique of

changing constants to variables.

: ' .Many important concepts. in order to be properly learned. require generalization of number.

For example. physical laws such as momentum and energy conservation apply to arbitrary

numbers of objects. constructing towers of blocks requires an arbitrary number of repeated

I -



Acquiring General Iterative Concepts 2

4stacking actions, and setting a table involves a range of possible numbers of guests. In addition,

there is recent psychological evidence (Ahn, Mooney. Brewer, and DeJong. 1987) that people can

generalize number on the basis of oile example.

Repetition of an action is not a sufficient condition for generalization to N to be appropriate.

Compare two simple examples. Generalizing to N is necessary in one but inappropriate in the

other. The examples are:

* observing a previously unknown method of moving an obstructed block, and

* seeing, for the first time, a toy wagon being built.

Suppose a learning system observes an expert achieving the desired states. In each case, consider

what general concept should be acquired.

In the first example, the expert wishes to move, using a robot manipulator. a block which has

four other blocks stacked in a tower on top of it. The manipulator can pick up only one block at a

time. The expert's solution is to move all four of the blocks in turn to some other location. After

the underlying block has been cleared, it is moved. In the second example. the expert wishes to

construct a movable rectangular platform, one that is stable while supporting any load whose

center of mass is over the platform. Given the platform and a bin containing two axles and four

wheels. the expert's solution is to first attach each of the axles to the platform. Next all four of the

wheels are grabbed in turn and mounted on an axle protrusion.

This comparison illustrates an important problem in explanation-based learning. Generalizing

the block unstacking example should produce a plan for unstacking any number of obstructing

blocks, not just four as observed. The wagon-building example, however, should not generalize the

number "'4." It makes no difference whether the system is given a bin of five. six. or 100 wheels.

because only four wheels are needed to fulfill the functional requirements of a stable wagon.

Standard explanation-based learning algorithms (DeJong and Mooney. 1986; Fikes. Hart. and

Nilsson, 1972; Hirsh, 1987: Kedar-Cabelli and McCarty. 1987: Mitchell. Keller. and Kedar-Cabelli.

1986: Mooney and Bennett. 1986; O'Rorke. 1987a) and similar algorithms for chunking (Laird.

Rosenbloom, and Newell, 1986) cannot treat these cases differently. These algorithms, possibly

% after pruning the explanation to eliminate irrelevant parts. replace constants with constrained

variables. They cannot significantly augment the explanation during generalization. Thus. the

building-a-wagon type of concept will be correctly acquired but the unstacking-to-move concept will

04



Acquiring General Iterative Concepts 3

be undergeneralized. The acquired schema will have generalized the identity of the blocks so that

the target block need not be occluded by the same four blocks as in the example. Any four

obstructing blocks can be unstacked. However. there must be exactly four blocks.' Unstacking five

or more blocks is beyond the scope of the acquired concept.

Note that EBL systems do not work correctly on the building-a-wagon kind of problems either

- they just get lucky. They do nothing to augment explanation structures during generalization.

It just happens that to acquire a schema to build a wagon, not generalizing the explanation

structure is the appropriate thing to do.

One can. of course, simply define the scope of EBL-type systems to exclude the unstacking-to-

move concept and those like it. This is a mistake. First. the problem of augmenting the explanation

during generalization, once seen. is ubiquitous. It is manifested in one form or another in most

real-world domains. Second. if one simply defines the problem away. the resulting system could

never guarantee that any of its concepts were as general as they should be. Even when such a

system correctly constructed a concept like the building-a-wagon schema, it could not know that it

had generalized properly. The system could not itself tell which concepts fall within its scope and

A which do not.

Observations of repeated application of a rule or operator may indicate that generalizing the

number of rules in the explanation may be appropriate. However, alone this is insufficient. To be

conducive to number generalization there must be a certain recursive structural pattern. That is.

each application must achieve preconditions for the next. For example. consider stacking blocks.

The same sort of repositioning of blocks occurs repeatedly, each building on the last. In this article,

the vocabulary of predicate calculus is adopted to investigate this notion of structural recursion.

The desired form of structural recursion is manifested as repeated application of an inference rule

in such a manner that a portion of each consequent is used to satisfy some of the antecedents of the

next application.

The next section introduces an implemented system designed to generalize the structure of

explanations. Subsequent sections describe the algorithm used and illustrate it with a detailed

example. Finally. before the conclusion, there are an empirical validation of the merits of

The SOAR system (Laird et aZ, 1986) would seem to acquire a number of concepts which together are slight-

Iv more general. As well as a new operator for moving four blocks, the ,vstem would acquire new operators
for moving three blocks. two blocks, and one block, but not for five or more.

% %%%.. ' / V ~ '~\.~ 2 . >-~. * '
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generalizing the structure of explanations (including a comparison to the results of a standard EBL

algorithm), a discussion of related work, and descriptions of several open research problems.

2. THE BAGGER SYSTEM

The BAGGER system (Building Augmented Generalizations by Generating Extended

Recurrences) analyzes predicate calculus proofs and attempts to construct concepts that involve

generalizing to N. Most of the examples under study use the situation calculus (McCarthy. 1963)

to reason about actions. in the style of Green(1969). (Green's formulation is also discussed in

(Nilsson. 1980).)

2.1. Situation Calculus

In situation calculus, predicates and functions whose values may change over time are given

an extra argument which indicates the situation in which they are being evaluated. For example.

rather than using the predicate On(x,y). indicating that x is on y. the predicate On(x.y,s) is used.

indicated that in situation s. x is on y. In this formulation, operators are represented as functions

that map from one situation to another situation.

Problem solving with BAGGER's situational calculus rules can be viewed as transforming and

expanding situations until one is found in which the goal is known to be achieved. The BAGGER

system has two types of inference rules: inter-situational rules which specify attributes that a new

situation will have after application of a particular operator, and inrtra-situationa rules which can

embellish BAGGER's knowledge of a situation by specifying additional conclusions that can be

drawn within that situation.

Each inter-situational inference rule specifies knowledge about one particular operator.

However, operators are not represented by exactly one inference rule. A major inference rule

specifies most of the relevant problem-solving information about an operator. But it is augmented

by many lesser inference rules which capture the operator's frame axioms and other facts about a

new situation. This paradigm contrasts with the standard STRIPS (Fikes and Nilsson. 1971)

formalism.2 The inference rules of a STRIPS-like system are in a one-to-one correspondence 'Xith

2 Fahiman (1974) and Fikes (1975) augmented the standard STRIPS model by allowing a distinction between

primary and secondary relationships. Primary relationships are asserted directly by operators while secon-
darv relationships are deduced from the primary ones as needed. While this serves the same purpose as
BAGGER's intra-situational rules, multiple inter-situational rules for an operator are not allowed ('.Valdinger.

L %



Acquiring General Iterative Concepts 5

the system's operators. Each inference rule fully specifies an operator's add- and delete-lists.

These lists provide all of the changes needed to transform the current situation into the new

situation. Any state not mentioned in an add- or delete-list is assumed to persist across the

operator's application. Thus. the new situation is completely determined by the inference rule In

the BAGGER system this is not the case. Many separate inference rules are used to fully

characterize the effect of an operator.

The advantage of the STRIPS approach is that the system can always be assured that it has

represented all that there is to know about a new situation. However, this can also be a

disadvantage. A STRIPS-like system must always muddle through all there is to know about a

*situation, no matter how irrelevant many facts may be to the current problem. Conversely. the

advantages of BAGGER's approach are that the inference rules are far less complex and therefore

more manageable. the system's attention focussing is easier because it does not bog down in

situations made overly-complex by many irrelevant facts. and a programmer can more easily write

and update knowledge about operators. Furthermore, STRIPS-style operators do not allow

disjunctive or conditional effects in their add- or delete-lists.

A potential disadvantage of BAGGER's approach is that to completely represent the effects of

applying an operator in a particular situation, the system must retrieve all of the relevant inference

rules. However. this is not a task that arises in BAGGER's problem solving. Indeed, there has been

no attemI5t to guarantee the completeness of the system's inferential abilities. This means that

there may be characteristics of a situation which BAGGER can represent but cannot itself infer.

2.2. Some Sample Problems

One problem solution analyzed by BAGGER is shown in figure 1. The goal is to place a

properly-supported block so that its center is above the dotted line and within the horizontal

confines of the line. BAGGER is provided low-level domain knowledge about blocks, including how

to transfer a single block from one location to another and how to calculate its new horizontal and

vertical position. Briefly, to move a block it must have nothing on it and there must be free space

at which to place it. The system produces a situation calculus proof validating the actions shown in

figure 1. in which three blocks must be moved to build the tower.

19").
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Acquiring General Iterative Concepts 6

Situationo

Stablel table2

Situation1

-tablel tbe

Situation 2

__-Ee1

tablel I r

Situation 3

I1

table

Figure 1. Constructing a Three-Block Tower

If a standard explanation-based generalization algorithm is applied to the resulting proof, a

plan for moving three blocks will result. They need not be these same three blocks, any three

distinct ones will suffice. Nor is it is necessary that the first block moved be placed on a table, any

flat. clear surface is acceptable. Finally, the height of the tower need not be the same as that in the

specific example. Given appropriately sized blocks, towers of any height can be constructed. Many

characteristics of the problem are generalized. However, the fact that exactly three blocks are

moved would remain.

If one considers the universe of all possible towers, as shown in figure 2. only a small fraction

of them would be captured by the acquired rule. Separate rules would need to be learned for

I%



Acquiring General Iterative Concepts

Figure 2. Universes of Constructible Towers

towers containing two blocks, five blocks, etc. What is desired is the acquisition of a rule that

describes how towers containing any number of blocks can be constructed.

By analyzing the proof of the construction of the three-block tower, BAGGER acquires a

general plan for building towers by stacking arbitrary numbers of blocks, as illustrated in figure 3.

This new plan incorporates an indefinite number of applications of the previously known plan for

moving a single block.

In another example, the system observes three blocks being removed from a stack in order to

satisfy the goal of having a specific block be clear. Extending the explanation of these actions

produces a plan for unstacking any number of blocks in order to clear a block within the stack.

Figure 4 illustrates this general plan. The plan includes the system's realization that the last

F~F7 _ _ _ _

VFigure 3. A General Plan for Constructing Towers

dl j
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Acquiring General Iterative Concepts 8

Figure 4. A General Plan for Unstacking Towers

unstacked block is currently clear and thus makes a suitable destination to place the next block to

be moved. This knowledge is incorporated into the plan and no problem solving need be performed

finding destinations once the first free location is found.

Unlike many other block-manipulation examples. in these examples it is not assumed that

blocks can support only one other block. This means that moving a block does not necessarily clear

its supporting block. Another concept learned by BAGGER, by observing two blocks being moved

from on top another, is a general plan for clearing an object directly supporting any number of

clear blocks. This plan is illustrated in figure 5.

, II'-I

Figure 5. A General Plan for Clearing Objects

The domain of digital circuit design has also been investigated. By observing the repeated

application of De.Morgan's law to implement two cascaded AND gates using OR and NOT gates.

BAGGER produces a general version of DeMorgan's law which can be used to implement N cascaded

AND gates with N OR and one NOT gate. This example, which does not use situation calculus, is

shown in figure 6.

06 '



Acquiring General Iterative Concepts 9

Specific Example General Concept

fg h ig i

abc d... z ab c d...y z

%Figure 6. A Circuit Design Example

The next section presents the BAGGER generalization algorithm. Following that. there is a

detailed presentation of the tower-building example. including the full proof tree and the acquired

rule. The inference rules used in this example are described in the appendix. Complete details on

the other examples. including the complete set of initial inference rules, the situation calculus

.. proofs, and the acquired inference rules, can be found in (Shavlik. 1988).

3. GENERALIZATION IN BAGGERa
Generalizing number, like more traditional generalization in EBL. results in the acquisition of

a new inference rule. The difference is that the sort of rule that results from generalizing number

describes the world after an indefinite number of world changes or other inferences have been

made. Each such rule subsumes a potentially infinite class of standard situation calculus rules.

Thus, with such rules the storage efficiency can be dramatically improved, the expressive power of

the system is increased, and, as shown in section 5, the system's performance efficiency can also be

higher than without these rules. This section describes how BAGGER generalizes number.

3.1. Sequential Rules

Like its standard inference rules, number-generalized rules in the BAGGER system are usually

represented in situational calculus. In the previous section. two types of BAGGER inference rules

.v.. are discussed: intra-situational rules and inter-situational rules. To define number-generalized

rules, the inter-situational rules are further divided into two categories: simple inter-situational

rules and sequential inter-situational rules (or simply sequential rules). Sequential rules apply a

S variable number of operators. Thus. within each application of a sequential rule many

intermediate situations may be generated. The actual number of intermediate situations depends

"-"' S"i . , " " " ,"x : -:.:-, ", .,-.- ",- -,. . - . , . . . . .- -



Acquiring General Iterative Concepts 10

on the complexity of the problem to be solved. The rule for building towers is an example of a

sequential rule. This rule is able to construct towers of any number of blocks in order to achieve a

#. ~specified goal height. The rule itself decides how many blocks are to be used and selects which

blocks to use from among those present in the current situation.

Sequential rules, like their simple inter-situational counterparts, have an antecedent and a

consequent. Also. like the simple versions, if the antecedent is satisfied, the consequent specifies

properties of the resulting situation. Unlike the simple rules, the resulting situation can be

separated from the initial situation by many operator applications and intermediate situations. For

example. to build a tower, many block-moving operations must be performed. It is an important

feature of sequential rules that no planning need be done in applying the intermediate operators.

That is. if the antecedent of a sequential rule is satisfied. its entire sequence of operators can be

applied without the need for individually testing or planning for the preconditions. The

* preconditions of each operator are guaranteed to be true by the construction of the sequential rule

itself. Thus, the consequent of a sequential rule can immediately assert properties which must be

- true in the final situation. A sequential rule behaves much as a STRIPS-like macro-operator. It is

termed a sequential rule and not a macro-operator because it is. in fact, a situational calculus rule

and not an operator. It has a situation variable, does not specify ADD and DELE7"E lists. etc.

Sequential rules can be much more efficient than simply chaining together simple constituents.

- This improved efficiency is derived from three sources: 1)collecting together antecedents so that

redundant and subsumed operator preconditions are eliminated. 2) heuristically ordering the

antecedents. and, especially. 3) eliminating antecedents that test operator preconditions which, due

to the structure of the rule. are known to be satisfied.

* 3.2. Representing Sequential Knowledge

A representational shift is crucial to this article's solution to the generalization to N problem.

While objects in the world are represented within simple inference rules directly as predicate

calculus variables, this is not possible for BAGGER's sequential rules. A standard operator interacts

with a known number of objects. Usually. this number is small. The rule representing the

operator that moves blocks, for example. might take as arguments the block to be moved and the

new location where it is to be placed. A simple inter-situational rule for this operator might

specify that in the resulting situation. the block represented by the first argument is at the location

, specified by the second. This rule represents exactly one application of the move operator. There

N
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are always two arguments. They can be conveniently represented by predicate calculus variables.

That is, each of the world objects with which a simple operator interacts can be uniquely named

with a predicate calculus variable. Sequential rules cannot uniquely name each of the important

world objects. A rule for building towers must be capable of including an arbitrary number of

blocks. The uninstantiated rule cannot know whether it is to be applied next to build a tower of

five blocks, seven blocks, or 24 blocks. Since the individual blocks can no longer be named by

unique variables within the rule, a shift is necessary to a scheme that can represent aggregations of

.' "world objects. Such a representational shift, similar to Weld's (1986), makes explicit attributes

that are only implicitly present in the example. Thus. it shares many characteristics of

constructive induction (Michalski. 1983: Rendell. 1985).

J

A new object called an RIS (for Rule Instantiation Sequence) is introduced to represent

"s' f arbitrarily large aggregations of world objects. A sequential rule works directly with one of these

O generalized structures so that it need not individually name every world object with which it

5. interacts. A sequential rule's RIS is constructed in the course of satisfying its antecedent. Once

this is done. the RIS embodies all of the constraints required for the successive application of the

sequence of operators that make up the plan.

3.3. The BAGGER Algorithm

Figure 7 schematically presents how BAGGER generalizes the structure of explanations. On

the left is the explanation of a solution to a specific problem. In it. some inference rule is

repeatedly applied a fixed number of times. In the generalized explanation. the number of

applications of the rule is unconstrained. In addition, the properties that must hold in order to

satisfy each application's preconditions. and to meet the antecedents in the goal. are expressed in

terms of the initial situation. This means that portions of the explanation not directly involved in

the chain of rule applications must also be expressed in terms of the initial state. When the initial

situation has the necessary properties. the results of the new rule can be immediately determined.
.5

without reasoning about any of the intermediate situations.
O

NAN
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Y Y
aplic2 applici

applic 2 applic.

appliC3  
Vplc

goal goal

Figure 7. Generalizing the Structure of an Explanation

The generalization algorithm appears in figure 8. This algorithm is expressed in a pseudo-

code, while the actual implementation is written in Lisp. The remainder of this section elaborates

the pseudo-code. In the algorithm back arrows (*-) indicate value assignment. The construct
%4

for each element in set do statement

means that element is successively bound to each member of set, following which statement is

evaluated. The functions AddDisjunct and AddConjunct alter their first argument. If either of

AddConjunct 's arguments is fail. its answer is fail. AddRule places the new rule in the database

of acquired rules.

The algorithm begins its analysis of a specific solution at the goal node. It then traces

backward, looking for repeated rule applications. To be a candidate, some consequent of one

instantiation of a rule must support the satisfication of an antecedent of another instantiation.

These repeated applications need not directly connect - there can be intervening inference rules.0

Once a candidate is found, all the inter-connected instantiations of the underlying general rule are

collected.

The general rule repeatedly applied is called a focus rule. After a focus rule is found,

BAGGER ascertains how an arbitrary number of instantiations of this rule and any intervening

rules can be concatenated together. This indefinite-length collection of rules is conceptually merged

into the explanation, replacing the specific-length collection, and a new rule is produced from the

augmented explanation.
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procedure BuidNewBAGGERrule (goalNode)

focusNodes - CollectFocusRuleApplications(goalNode)

antecedentslnitial - BuildlnitialAntecedents( Earliest(focusNodes))

antecedentslntermediate

for each focus.Node in focusNodes do

answer - ViewAsArbitraryApplic(focusNode. focusNodes)

if answer ;d fail then AddDisjunct(antecedentslnterrnediate, answer)

antecedentsFinal -View AsArbitrary Applic(goalN ode. focusNodes))

consequents - CollectGoalTerms(goalNode)

if antecedentslntermediate * A antecedentsFinal ;d fail

then AddRule(antecedentslnitial. antecedentslntermediate. antecedentsFinal. consequen ts)

procedure ViewAsArbitraryApplic (node. focusNodes)

result'-

f or each antecedent in Antecedents(nodle) do

if Axiom?(antecedent) then true

else if SupportedByEarlierNode?(antecedent. focusNodes) then

AddConjunct(result. CollectNecessaryEqualities(antecedent. Supporter(araecedent)))

else if Situationlndependent?(antecedent) then AddConjunct(result. antecedent)

else if SupportedBvPartiallyLnwindableRule?(antecedent) then

AddConjunct( result. CollectResultsOfPartiallyUnwinding(antecedent))

AddConjunct(result. View -AsArbitrarvApplic( PartiallyUnwind(antecedent). focusNodes))

else if SupportedBvUnwindableRule?(antecedent) then

AddConjunct(result. CollectResultsOf Unwinding(antecedent))

else if SupportedBvRuleConsequent?(antecedent) then

AddConjunct(result. CollectNecessaryEqualities(antecedent. Supporter(antecedent)))

AddConjunct( result. View AsArbitrary ApplIic (Support ingR ule(anteceden 0. focusNodes))

else return fail

return result

Figure 8. The BAGGER Generalization Algorithm

A specific solution contains several instantiations of the general rule chosen as the focus rule.

V.

M E*\~~ *4~
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Each of these applications of the rule addresses the need of satisfying the rule's antecedents.

possibly in different ways. For example. when clearing an object, the blocks moved can be placed

in several qualitatively different types of locations. The moved block can be placed on a table

(assuming the domain model specifies that tables always have room), it can be placed on a block

moved in a previous step. or it can be placed on a block that was originally clear.

BAGGER analyzes all applications of the general focus rule that appear in the specific example.

When several instantiations of the focus rule provide sufficient information for different

generalizations. BAGGER collects the preconditions for satisfying the antecedents of each in a

disjunction of conjunctions (one conjunct for each acceptable instantiation). Common terms are

factored out of the disjunction. If none of the instantiations of the focus rule provide sufficient

information for generalizing the structure of the explanation. no new rule is learned by BAGGER.

Three classes of terms must be collected to construct the antecedents of a new rule. First. the

antecedents of the initial rule application in the arbitrary length sequence of rule applications must

be satisfied. To do this. the antecedents of the focus rule are used. Second, the preconditions

imposed by chaining together an arbitrary number of rule applications must be collected. These are

derived by analyzing each inter-connected instantiation of the focus rule in the sample proof.

Those applications that provide enough information to be viewed as the arbitrary iih application

produce this second class of preconditions. Third. the preconditions from the rest of the

explanation must be collected. This determines the constraints on the final applications of the focus

rule.

In order to package a sequence of rule applications into a single sequential rule. the

preconditions that must be satisfied at each of the N rule applications must be collected and

combined. The preconditions for applying the resulting extended rule must be specifiable in terms

of the initial state, and not in terms of intermediate states. This insures, given that the necessary

conditions are satisfied in the initial state, a plan represented in a sequential rule will run to

.--' completion without further problem solving, regardless of the number of intervening states

necessary. For example, there is no possibility that a plan will lead to moving N-2 blocks and then

get stuck. If the preconditions for the i:h rule application were expressed in terms of the result of

"U~i the (i-1)tAh application, each of the N rule applications would have to be considered in turn to see if

the preconditions of the next are satisfied. This is not acceptable. In the ipproach taken. extra

work during generalization and a possible loss of generality are traded off for a rule whose

,4 =% .,.g o .e % % % % . . , "° "% % "% "% " - . % -""% "% - W W % ', """% """% "% "%
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preconditions are easier to check.

When a focus rule is concatenated an arbitrary number of times, variables need to be chosen

for each rule application. The RIS. a sequence of p -dimensional vectors, is used to represent this

information. The general form of the RIS is:

, . <V I.,.... V 1,P >., <V2. ..... V > .... I <V 1 . .. vn4 >( )

In the tower-building example of figure 1. initially p = 3: the current situation, the object to be

moved, and the object upon which the moved object will be placed.

Depending on the rule used. the choice of elements for this sequence may be constrained. For

example, certain elements may have to possess various properties, specific relations may have to

hold among various elements, some elements may be constrained to be equal to or unequal to other

elements, and some elements may be functions of other elements. Often choosing the values of the

components of one vector, determines the values of components of subsequent vectors. For

instance, when building a tower, choosing the block to be moved in step i also determines the

location to place the block to be moved in step i+l.

To determine the preconditions in terms of the initial state, each of the focus rule

instantiations appearing in the specific proof is viewed as an arbitrary (or i.') application of the

underlying rule. The antecedents of this rule are analyzed as to what must be true of the initial

state in order that it is guaranteed the i:t. collection of antecedents are satisfied when needed. This

involves analyzing the proof tree. considering how each antecedent is proved. An augmented

version of a standard explanation-based generalization algorithm (Mooney and Bennett, 1986) is

used to determine which variables in this portion of the proof tree are constrained in terms of other

variables.

Once this is done, the variables are expressed as components of the p-dimensional vectors

described above, and the svstem ascertains what must be true of this sequence of vectors so that

each antecedent is satisfied when necessary. All antecedents of the chosen instantiation of the focus

rule must be of one of the following types for generalizing to .V to be possible.

(1) The antecedent may be an cxiom. Since an axiom always holds. it need not appear as a

precondition in the final rule.

- .r
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(2) The antecedent may be supported by a consequent of an earlier application of the focus rule.

Terms of this type place inter-vector constraints on the sequence of p-dimensional vectors.

These constraints are computed by unifying the general versions of the two terms.

(3) The antecedent may be situation-independent. Terms of this type are unaffected by actions.

(4) The antecedent may be supported by an "unwindable" or partially "unwindable" rule. When

this happens. the antecedent is unwound to an arbitrary earlier state and all of the

preconditions necessary to insure that the antecedent holds when needed are collected. A

partially unwindable rule goes back an indefinite number of situations, from which the

algorithm continues recursively. If no other inference rules are in the support of the

unwindable rule. then it is unwound all the way to the initial state. The process of

* unwinding is further elaborated later. It. too, may place inter-vector constraints on the

sequence of p-dimensional vectors.

(.5) The antecedent is supported by other terms that are satisfied in one of the above ways. When

* .- traversing backwards across a supported antecedent. the system collects any inter-vector

constraints produced by unifying the general version of the antecedent with the general

version of the consequent that supports it.

Notice that antecedents are considered satisfied when they can be expressed in terms of the

initial state, and not when a leaf of the proof tree is reached. Conceivably. to satisfy these

antecedents in the initial state could require a large number of inference rules. If that is the case. it

may be better to trace backwards through these rules until more operational terms are encountered.

JThis operationality,'generality trade-off (DeJong and Mooney. 1986: Keller. 1987; Mitchell. Keller.

and Kedar-Cabelli. 1986: Segre. 1987; Shavlik. DeJong. and Ross. 1987) is a major issue in

explanation-based learning, but will not be discussed further here. Usually the cost of increased

operationality is more limited applicability. An empirical analysis of the effect of this trade-off in

the BAGGER system appears in (Shavlik. 1988).

• A second point to notice is that not all proof subtrees will terminate ,n one of the above ways.

If this is the case. this application of the focus rule cannot be viewed as an arbitrary i1

application.
3

kn aliernati e approach to this % ould be to have the system search through its collection of unwindable
rules and incorporate a relevant one into the proof structure. Io stud\ the limits of this article's approach to

S,

V4
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The possibility that a specific solution does not provide enough information to generalize to N

is an important point in explanation-based approaches to generalizing number. A concept involving

an arbitrary number of substructures may involve an arbitrary number of substantially different

problems. Any specific solution will only have addressed a finite number of these sub-problems.

Due to fortuitous circumstances in the example some of the potential problems may not have

arisen. To generalize to N, a system must recognize all the problems that exist in the general

concept and. by analyzing the specific solution, surmount them. Inference rules of a certain form

(described later) elegantly support this task in the BAGGER system. They allow the system to

reason backwards through an arbitrary number of actions.

Figure 9 illustrates how consequents of an earlier application of a focus rule can satisfy some

,, antecedents of a later instantiation. This figure contains a portion of the proof for the tower-

Lbuilding example. (The full proof tree is presented and discussed later.) Portions of two

transferi I

On(.i-l.?yi-l.Do(Transfergxi-l.'.2 i-),?Si-1
) ) Clear(?.i_1 . Do(Transfer( .. 1_1, ,...ii) .?Si-1I)

AchievableState(Do(Transfer(?xi-1 , 7yi-1 ) , NSi-I ) )

FlatTop(?z) Clear(?z, ?S)

FreeSpace('z, ?s)

I-I

AchievableState(?s i ) FreeSpace(?y 1 , ?s1 )

.?x i d .) Liftable("x i . ?s i )

transfer

Figure 9. Satisfying Antecedents by Previous Consequents

generalizing to N. it is required that a:, necessa . information be present in the explanation no problem-
soiving search is performed during generalization. Another approach mould be to assume the problem solxer
could overcome this problem at rule application time. This second technique, however, would eliminate ,he
property that a learned plan will always run to completion &hene-,eT it% precondoiions are satisfied in the
initial %tate.

, .. , .-- "
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consecutive transfers are shown. All variables are universally quantified. Arrows run from the

antecedents of a rule to its consequents. Double-headed arrows represent terms that are equated in

the specific explanation. The generalization algorithm enforces the unification of these paired terms.

. leading to the collection of equality constraints.

There are four antecedents of a transfer. To define a transfer, the block moved (x), the object

on which it is placed (y). and the current state (s) must be specified, and the constraints among

these variables must be satisfied. One antecedent. the one requiring a block not be placed on top of

itself, is type 3 - it is situation-independent. The next two antecedents are type 2. Two of the

consequents of the (i-I ith transfer are used to satisfy these antecedents of the it transfer. During

transfer, -1. in state s, -1 object x, -1 is moved on to object y. The consequents of this transfer are

that a new state is produced, the object moved is clear in the new state. and x,_-1 is on y, 1 in the

I resulting state.

The state that results from transfer,-, satisfies the second antecedent of transfer, . Unifying

these terms defines s, in terms of the previous variables in the RIS.

Another antecedent requires that. in state s, , there be space on object y, to put block x,. This

antecedent is type 5. and. hence. the algorithm traverses backwards through the rule that supports

it. An inference rule specifies that a clear object with a flat top has free space. The clearness of

*. ,1 after transfer, -1 is used. Unifying this collection of terms leads, in addition to the redundant

definition of s, . to the equating of y, with z and x,_1 . This means that the previously moved block

always provides a clear spot to place the current block, which leads to the construction of a tower.

The fourth antecedent, that x, be liftable, is also type 5. A rule (not shown) states that an

object is liftable if it is a clear block. Block x, is determined to be clear because it is clear in theS
initial state and nothing has been placed upon it. Tracing backwards from the liftable term leads

to several situation-independent terms and the term Supports(?x: . 6. ?s, ). Although this term

contains a situation variable. it is satisfied bv an "unwindable rule." and is type 4.

Equation 2 presents the form required for a rule to be unwindable. The consequent must

-, match one of the antecedents of the rule. Hence, the rule can be applied recursively. This feature

is used to "'unwind" the term from the ith state to an earlier state, often the initial state.

- Occasionally there can be seseral unwindable rules in a support path. For example. a block might
S-apuport another block during some number of transfers, be cleared, remain clear during another

", %
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sequence of transfers. and finally be added to a tower. The variables in the rule are divided into

three groups. First, there are the x variables. These appear unchanged in both the consequent's

term P and the antecedent's term P. Second. there are the Y variables which differ in the two P's

and the z variables that only appear in the antecedents. Finally. there is the state variable (s)

There can be additional requirements of the x, y, and z variables (via predicate Q), however, these

requirements cannot depend on a state variable.

Applying equation 2 recursively produces equation 3. This rule determines the requirements

on the earlier state so that the desired term can be guaranteed in state i. Except for the definition

of the next state, none of the antecedents depends on the intermediate states. Notice that a

collection of y and z variables must be specified. Any of these variables not already contained in

the RIS are added to it. Hence, the RIS is also used to store the results of intermediate

computations. Since the predicate Q does not depend on the situation, it can be evaluated in the

initial state.

and
Q (x1,1, • ~ i , ,,Yt-, . .Y l yz Y, -IM • , l".1, • -1 ,Z1. )

and

s.- Do(x.1 x , -- ly, M'Y ,, -.- 1)

P (x . , y, .1. . ly,, st (2)

".

P(x:.. .x,,,,y., ..... y 1.,sl) and O< j< i

and

k IC.-..

pA k-j.1 Yk Yk1 Yk P-

'S and

S k -- D O ( X .1 X , ., , Y k . 1 ' Y k - v . . - , , , I 2 - _ 1 / ,a , 5 k  - 1 )

~-

Ie P (X:. .. ". J S (3)

4.F

% %
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The requirements on the predicate Q are actually somewhat less restrictive. Rather than

requiring this predicate to be situation-independent, all that is necessary is that any term

containing a situation argument be supported (possibly indirectly) by an application of a focus

rule. The important characteristic is that the satisfication of the predicate Q can be specified in

terms of the initial situation only. Separately unwinding a predicate Q while in the midst of

unwinding a predicate P is not possible with the current algorithm, and how this can be

accomplished is an open research issue.
S....

e... Frame axioms often satisfy the form of equation 2. Figure 10 shows one way to satisfy the

need to have a clear object at the ith step. Assume the left-hand side of figure 10 is a portion of

some proof. This explanation says block x, is clear in state si because it is clear in state s, -i and

the block moved in transferi 1 is not placed upon xi. Unwinding this rule leads to the result that

block xi will be clear in state s, if it is clear in state s I and x, is never used as the new support

block in any of the intervening transfers.
.4

, To classify an instantiation of a rule as being unwindable. the rule must be applied at least

twice successively. This heuristic prevents generalizations that are likely to be spurious. Just like
when looking for multiple applications of the focus rule. multiple applications are required for

unwindable rules. The intent of this is to increase the likelihood that a generalization is being made

that will be prove useful in the future. For example. imagine some rule represents withdrawing

some money from a bank and also imagine this rule is of the form of equation.2. Assume that in

state 5, John withdraws S500 to buy a television, while in states 1-4. the amount of money he has

-. " in the bank is unaffected. While it is correct to generalize this plan to include any number of trips

to the bank in order to get sufficient money for a purchase. it does not seem proper to do so.

A Portion of the Explanation Unwound Subgraph

Clear(?z. ?s) ?z ;- ?y Clear('xi. ?s l ) ?x i ;d ?yi

Clear(z. Do(Transfer(?x. ?y), ?s)) Clear(?xi. ?s,) ?x i * ?y,

, ' , Clear(?xi. Is$,) Clear(?x i . ?s, )

O. Figure 10. Unwinding a Rule

O,:

.%,.... ., .N..
1%&.& s
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Rather. the generalization should be to a single trip to the bank at any time. Frame axioms are

exceptions to this constraint - they only need to be applied once to be considered unwindable. Since

frame axioms only specify what remains unchanged, there is no risk in assuming an arbitrary

number of successive applications.

Once the repeated rule portion of the extended rule is determined, the rest of the explanation

is incorporated into the final result. This is accomplished in the same manner as the way

antecedents are satisfied in the repeated rule portion. The only difference is that the focus rule is

Wnow viewed as the Nth rule application. As before. antecedents must be of one of the five specified

types. If all the terms in the goal cannot be satisfied in the arbitrary Nth state, no rule is learned.

The consequents of the final rule are constructed by collecting those generalized final

consequents of the explanation that directly support the goal.

Even though all the antecedents of a sequential BAGGER rule are evaluated in the initial state.

substantial time can be spent finding satisfactory bindings for the variables in the rule.

Simplifying the antecedents of a rule acquired using EBL can increase the efficiency of the rule

(Minton. Carbonell. Etzioni. Knoblock. and Kuokka. 1987; Prieditis and Mostow: 1987). After a

rule is constructed by the BAGGER generalization algorithm, duplicate antecedents are removed and

the remainder are rearranged by the system in an attempt to speed-up the process of satisfying the

rule. This involves several processes. Heuristics are used to estimate whether is better to construct

sequences from the first vector forvard or from the last vector backward. Terms not effected by

.P the intermediate antecedent are moved so that they are tested as soon as possible. Terms involving

arithmetic are placed so that all their arguments are bound when they are evaluated. Finally.

within each grouping. antecedents are arranged so that terms involving the same variable are near

each other.

The next section discusses the sequential-rule produced by this algorithm when applied to the

problem of building a tower.

4. DETAILS OF THE STACKING EXAMPLE

This section presents the details of one of BAGGER's sequential rules. The proof that explains

the tower-building actions of figure 1 appears in figure 11. This graph is produced by the BAGGER

system, however nodes have been rearranged by hand for the sake of readability. Since the

situation arguments are quite lengthy. they are abbreviated and a key appears in the figure.

N

% %
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BOX(A) B P6A
Supports(A.,*,s) Supports(table2,,sO)Table(table2)

Cl0(~O DlckA A * B NotNember(A,#)
Clear(table2,sO) FlatTo table2)

A $table2 &NotMeziber(A.(BI)
Uf table(AsO) Frepc~a~~,i)C id table2 Support(C,(B).sO)

[e~t tSupports(B,,s)
AchievableState(. B tbU2 otemerA,)

BoA att Ie brA#

I ox(rs(A)sl Supports(C,(B).sl)
On(A,table, Clear(AsI) i ox(B,#s) MeRemoAB Ve~o~gB{)*

FlatTop(A) Bo()Bg'()#

AchlevableState(sl) & Bok(B) Height(A.60)/ A - tbie2
Fre~ae(~s) & & 85-(60+25)

A FrA UftabiAsl s1i Ypos(table2,2SAs

B&i al(A Box(C) Supports(CO{h2) &
OnB,~s) OX(B) /

On( Xs2) 0B) Block(C) Clear(Cs2) 31 $ A ypO,(A.8S.s1)
Clear(Bs2) FlatTop(B 135- Hei(h0 + 55)

& 
tIAchievableState(s2) & &Hih(.0

c Pe3 Fr"Space(B,s2) Lif tble(C,s2)

~Xpos(table2,650.sO) C 0 B YrposB.135,s2)

On(C,B,s3) Clear(COs) I----5,l Hih(C3)17 35+15
Xpos(B,650,s2)

AchievableState(s3) e' 650 >, 550

Figure 11. Situation Calculus Plan for Stacking Three Blocks

Abbreviation Key

* sO the iratal state Q2 DodTransfer(B.A).Do(Transfer(Atbe2)sO))

%I Do(Transfer(Ajtable2),sO) s3 Do(Transfer(C,B).Do(Transfer(BA).DodTransferAtable2)so)))

Arrows run from the antecedent of a rule to its consequent. When a rule has multiple antecedents

or consequents. an ampersand (&) is used. Descriptions of all the rules used in this structure are

contained in the appendix. The primed ampersands are the instantiations of the focus rule, while

% %%
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V

.V the low'est ampersand is the goal node.

The goal provided to the backward-chaining theorem prover that produced this graph is'

AchievableState(?state) A
Xpos(?object, ?px. ?state) A ?px >3 550 \ 7px < 750 /
Ypos(?object. ?py. ?state) A ?pv > 150.

This says that the goal is to prove the existence of an achievable state, such that in that state the

Ihorizontal position of some object is between 550 and 750 and the vertical position of that same

objects is at least 150.

The sequential-rule produced by analyzing this explanation structure appears in table 1 The

remainder of this section describes how each term in this table is produced. Line numbers have

been included for purposes of reference. For readability, the new rule is broken down into

components. as shown in equation 4. While BAGGER's reordering of a new rule's antecedents

means the presented rule is somewhat harder to read, table I accurately reflects the rule acquired

and used by the system.
4%

4.1. Producing the Initial Antecedents

The initial antecedents in the first line of the rule establish a sequence of vectors, the initial

state. and the first vector contained in the sequence. Subscripts are used to indicate components of

vectors, as a shorthand for functions that perform this task. For example..vv 1 3 is shorthand for

ThirdComponent (?v 1). Lines 2 and 3 contain the antecedents of the first application in the chain of

applications These are the same terms that appear in the focus rule (the first rule in table A.2).

except that the components of v 1 are used. The system has knowledge of which arguments are

situation variables and the initial state constant sO is placed in these positions. The other terms in

this grouping are produced by the unwinding process (Height , Xpos . 'pos . and the addition term)

or are moved (>, and <) from the final antecedents to the initial antecedents because their

variables are not influenced by the intermediate antecedents. The terms produced b% unwinding

are described further in what follows.

.1.2. Analyzing the Applications of the Focus Rule

Lines 5-1 1 contain the preconditions derived bv analyzing the three instantiations o' the focus

rule. In this implication, v, - an arbitrary vector in the sequence (ether than the first) - is used. as
b these constraints must be satisfied for each of the applications that follox the first. Vector vi,_ is

* I£ ',.,' ,. 4, ", . . . ,""€""-". "- "- --¢ "-"""- "-" -"-"- .-"- , "- " •• •- -% ,, " "•- ,- .1• ,- .-,• .- -.
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Table 1 The Components of the Learned Rule

Antecedents initial
".'

(1) Sequence(?seq) A InitialVector(?vl.?seq) A State(sO) A ?vI. I= sO A

(2) FreeSpace(?v1 .3, sO) A Liftable(?vl, 2' sO) A Height(?vl, 2' ?v1 , 4) A

(3) Xpos(?v1 3' ?px, sO) A Ypos(?v1 . 3" 7new. sO) A 7% 2 7t ?v1 3 A

"' (4) ?vl.5 = (?V 1 4 + ?n ew) A ?px ?- 7xmin A ?px -< 7xmax

Antecedent intermediate

(5) [Member(7v i. ?seq) A ?v1 * ?v1 A Member(?vi 1 . 7seq) A Predecessor(v i -1 . Ivi" ?seq)

(6) >. 3 = ? 2il, A ?%-.l =I Do(Transfer(?vi-1.2, ?vi- .3)" 7vi-1 1) A FlatTop(gvi. 3) A
0(?v1 i -,2' -. F't pv 5)A

(7) Block(?v i 2) A Height(?vi2' ?v 4) A ?vi, 2 ;d 7"i. 3 A v Ov + ...." .i, i,.5 .4 • ,-1

(8) [ [ [Member(?v ?seq) A Earlier(?vj. ?v1.?seq) -- ?v 2 ?vj, 3] A Supports(?v. 2, 6, so)

(9) V [ [Member(?v-. ?seq) A Earlier(vj. 7vi- 1. ?seq) - NotMember(?vi, 2" { 2}) A

(10) DkMember('vi. ?seq) A Earlier(?vj, ?v,_ Iseq) 7vi, 2 ?vj. 3] A

(11) Supports(?vi. 2' {?Vi-l. 2). sO) A ?."i. 2 * ?vi- . 3 
]

Antecedents inal

(12) FinalVector(?v ,n.?seq) A 7pY = ?vn. 5 A ?state = Do(Transfer(, n . 2' ?v 3 ). ?'n. 1) A

(13) ?object = ?vn 2 A ?py - ?,-min

Consequents

* (14) State(7state) A Xpos(7objeci. ?px. ?state) A ?px < 7xmax A ^px ? ?xmin A

(15) Ypos(7object, 7py. ?state) A ?py > ?ymin

This rule extends sequences I - N.

Antecedents~,~, A Antecedetin.enwdare A Antecedents,,,, Consequents (4)

, "

the vector immediately preceding vi. It is needed because some of the antecedents of the itl

application are satisfied by the (i-)tAh application. Although some preconditions in the new rule
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involve v, and v,-,. these preconditions all refer to conditions in the initial state. They do not refer

to results in intermediate states.

The final two of the three instantiations of the focus rule produce sufficient information to

determine how the antecedents of the rule can be satisfied in the ith application. In the first

application (upper left of figure 11). neither the support for Liftable nor the support for FreeSpace

provide enough information to determine the constraints on the initial state so that these terms can

be satisfied in an arbitrary step. In both cases. the proof only had to address clearness in the

current state. No information is provided within the proof as to how clearness can be guaranteed

to hold in some later state.

. The two other instantiations of the focus rule provide sufficient information for

generalization. Two different ways of satisfying the antecedents are discovered, and, hence, a

44 disjunction is learned. The common terms in these two disjuncts appear in lines 6 and 7. while the

remaining terms for the first disjunction are in line 8 and for the second in lines 9-1 1.

The third term in line 7 is the vector form of the inequality that is one of the antecedents of

the focus rule. This, being situation-independent, is a type 3 antecedent. In vector form, it

U becomes v, .2 ; 1 :.3- It constrains possible collections of vectors to those that have different second

and third members. This constraint stems from the requirement that a block cannot be stacked on

itself.

Both of the successful applications of the focus rule have their AchievableState term satisfied

by a consequent of a previous application. These terms are type 2 and require collection of the

, equalities produced by unifying the general versions of the matching consequents and antecedents.

(See figure 9 for the details of these matchings.) The equality that results from these unifications is

the second term of line 6. Thus, the next state is always completely determined by the previous

one. No searching needs to be done in order to choose the next state. (Actually. no terms are ever

evaluated in these intermediate states. The only reason the,, are recorded is so that the final state

can be determined, for use in setting the situation variable in the consequents.)

Both successful applications have their FreeSpace term satisfied in the same manner.

Traversing backwards across one rule leads to a situation independent term (FlatTop - line 6) and

the consequent of an earlier application (Clear ). Unifying the two clear terms (again, see figure 9)

produces the first two equalities in line 6. This first equality means that the block to be moved in

It.

€ ,# -. . e.10 Q 4. . . ,a ". - . '4 / '. . .e- - .' ,"',' . 1, " /
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the ith step can always be placed on top of the block to be moved in the (i-kh step. No problem

solving need be done to determine the location at which to continue building the tower.

The Block term in line 7 is produced during the process of analyzing the way the Liftable

term is satisfied. The remaining portion of the analysis of Liftable produces the terms in the

disjunctions. As in the initial antecedents, the Height and addition terms in line 7 are produced

during the analysis of the terms in the goal. which is described later.

In the second application of the focus rule. which produces the first disjunct. a clear block to

move is acquired by finding a block that is clear because it supports nothing in the initial state and

nothing is placed on it later. The frame axiom supporting this is an unwindable rule. Unwinding

it to the initial state produces line 8. The Supports term must hold in the initial state and the

block to be moved in step i can never be used as the place to locate a block to be moved in an earlier

step. The general version of the term NotMember (A .c) does not appear in the learned rule

because it is an axiom that nothing is a member of the empty set. (An earlier unification, from the

rule involving Clear. requires that the second variable in the general version of NotMember term

be 0.)

Notice that this unwinding restricts the applicability of the acquired rule. The first disjunct

requires that if an initially clear block is to be added to the tower, nothing can ever be placed on it.

even temporarily. A more general plan would be learned, however, if in the specific example a

block is temporarily covered. In that case. in the proof there would be several groupings of

unwindable rules; for awhile the block would remain clear, something would then be placed on it

and it would remain covered for several steps. and finally it would be cleared and remain that way

until moved. Although this clearing and unclearing can occur repeatedly, the current BAGGER

algorithm is unable to generalize number within unwindable subproofs.

The second disjunct (lines 9-11) results from the different way a liftable block is found in the
third application of the focus rule. Here a liftable block is found be using a block that initially

*, supported one other block, which is moved in the previous step. and where nothing else is moved to

the lower block during an earlier rule application. Unwinding the subgraph for this application

leads to the requirements that initially one block is on the block to be moved in step i. that block

be moved in step li-I ). and nothing else is scheduled to be moved to the lower block during an

. earlier rule applications. Again. some terms do not appear in the learned rule (Member and

, RemoveFromBag) because, given the necessary unifications. they are axioms. This time 1

% . ... .. . .. .. .. . .
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NotMember is not an axiom, and hence, appears. If the specific example were more complicated.

the acquired rule would reflect the fact that the block on top can be removed in some earlier step,

rather than necessarily in the previous step.

4.3. Analyzing the Rest of the Explanation

pOnce all of the instantiations of the focus rule are analyzed. the goal node is visited. This

produces lines 12 and 13, plus some of the earlier terms.

The AchievableState term of the goal is satisfied by the final application of the focus rule.

leading to the third term in line 12.

The final X-position is calculated using an unwindable rule. Tracing backwards from the

Xpos in the goal to the consequent of the unwindable rule produces the first term in line 13. as

well as the third term in line 12. When this rule is unwound it produces the first term of line 3

and the second term of line 6. Also. matching the Xpos term in the antecedents with the one in the

consequents. so that equation 2 applies, again produces the first term in line 6. Since there are no

"Q"-terms (equation 2). no other preconditions are added to the intermediate antecedent.

i The inequalities involving the tower's horizontal position are state-independent: their general

forms are moved to the initial antecedents because their arguments are not effected by satisfying
.1'.

the intermediate antecedent. These terms in the initial antecedents involving ?px insure that the

tower is started underneath the goal.

Unwindable rules also determine the final Y-position. Here "Q"-terms are present. The

connection of two instantiations of the underlying general rule appears in figure 12. This general

rule is unwound to the initial state, which creates the second term of line 3 and the second term of

line 6. The last three terms of line 7 are also produced, as the 'Q"-terms must hold for each

application of the unwound rule. This process adds two components to the vectors in the RIS. The

first (?v, 4 ) comes from the ?hx variable, which records the height of the block being added to the

tower. The other (?v,. 5) comes from the variable ?yPos 2. It records the vertical position of the

block added, and hence, represents the height of the tower. The ?'pos variable does not lead to the

creation of another RIS entry because it matches the ?yPos 2 variable of the previous application.

All that is needed is a ?ypos variable for the first application. Similarly, matching the }'ps term

in the antecedents with the one in the consequents produces the first term in line 6.

-.
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7xi-1 Y1'-i YPOSP%2,-1, 7'1- "o, ?S1-1)

Height(,_1, ?hl, 7YO2- - (?hxj-j - ')ypos,-,)

~~~Y pos(?xj-l, "?ypoxs21- , Do(Transfer(?xi-1, ?y1-_ ), ?s1_-1) )

Ni * ",*Y Ypos(7, ,, 7h/IXS,. ")s,)

Heighe( i(, ?hxi 1  yoss22 = (?h-xi + oyposs

ft.

Ypos(?I, ?ypos2?,osfe Do(Transfer(? 1, yl ), ?)1

' Figure 12. Calculating the Vertical Position of the ith Stacked Block

, ! The last conjunct in the goal produces the second term on line 13. This preconditon insures

,,co€.that the final tower is tall enough.

...
,.e.

Finally. the general version of the goal description is usedo t stche consequents of the

I new.x rule (lines 14 and 15).

' 5. EMPIRICAL ANALYSISAn empirical analysis of the performance of the BAGGER system is presented in this section.

, ; This system is compared to an implementation of a standard explanation-based generalizaton

algorithm (Mooney and Bennett. 1986) and to a problem-solving system that performs no learning.

Two different training strategies are analyzed. The results demonstrate the efcacy of generalizing

, to N
5,1. Experimental Methodology

n.Experiments are run using blocks-world inference rules.yAn initial stuaton is created by

generating ten blocks, each with a randomly-chosen ,idth and height. On~e at a ime, they are

idrped from an arbitrary horizontal position over a table: f they all n an unstabe location.

.- *.
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*+' they are picked up and re-released over a nex location. Once the ten blocks are placed. a

randomly-chosen goal height is selected, centered above a second table. The goal height is

determined by adding from one to four average block heights. In addition, the goal specifies a

maximum height on towers. The difference between the minimum and maximum acceptable tower
",.

- heights is equal to the maximum possible height of a block. This reason for this upper bound is

qexplained later. A sample problem situation can be seen in figure 13.

Once a scene is constructed. three different problem solvers attempt to satisfy the goal. The

first is called no-learn, as it acquires no nev rules during problem solving The second. called

sEBL, is an implementation of a standard explanation-based generalization algorithm. (Explanation

structures are pruned at terms that are either situation-independent or describe the initial state)

BAGGER is the third system. All three of these systems use a backward-chainng problem solver to

satisfy the preconditions of rules. When the two learning systems attack a new problem. they first

try to apply the rules they have acquired. possibly also using existing intra-situational rules No

inter-situational rules are used in combination with acquired rules, in order to limit searching.
IW% 

.

which would quickly become intractable. Hence. to be successful, an acquired rule must directly

lead to a solution without using other inter-situational rules.

BAGGER's problem solver, in order to construct the RIS. is a slightly extended version of the

standard backward-chaining problem solver used by the other two systems. First, the constraints

on 9v are checked against the initial state. This leads to the binding of other components of the

first vector in the sequence. Next. the problem solver checks if the last vector in the sequence (at

this point. ?v 1) satisfies the preconditions for ?v' - If so. a satisfactory sequence has been found and

back-chaining terminates successfully. Otherwise. the last vector in the sequence is viewed as ?v-i

and the problem solver attempts to satisfy the intermediate antecedent. This may lead to vector

?v, being incorporated into the sequence. If a new vector is added. the final constraints on the

sequence are checked again. If they are not satisfied. the new head of the sequence is viewed as

L9 J

Figure 13. A Sample ProblemI' u
%) % o _%L. -02 16 16
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""._1 and the process repeats This cycle continues until either the current sequence satisfies the

rule's antecedents or the initial state cannot support the insertion of another vector into the
sequence When the current sequence cannot be further extended, chronological back-tracking is

.d. performed. moving back to the last point where there are choices as how to lengthen the sequence

Two different strategies for training the learning systems are employed. In one. called

autonomous mode. the learning systems resort to solving a problem from "first principles" when

,. none of their acquired rules can solve it. This means that the original inter-situational rules can be

used. but learned rules are not used. When the proof of the solution to a problem is constructed in

this manner. the systems apply their generalization algorithm and store an general rule that is

produced. In the other strategy. called training mode. some number of solved problems (the

training set) are initially presented to the systems, and the rules acquired from generalizing these

solutions are applied to additional problems (the test set). Under this second strategy. if none of a

system's acquired rules solves the problem at hand. the system is considered to have failed. No

problem solving from first principles is ever performed by the learning systems in this mode.

Unfortunately. constructing towers containing more than two blocks from first principles

exceeds the limits of the computers used in the experiments (Xerox Dandelions). For this reason,

the performance of the no-learn system is estimated by fitting an exponential curve to the data

obtained from constructing towers of size one and two. This curve is used by all three systems to

* estimate the time needed to construct towers from first principles \;,hen required. and a specialized

procedure is used to generate a solution.

It.- Data collection in these experiments is accomplished as follows. Initially. the two learning

aa 'systems possess no acquired rules. They are then exposed to a number of sample situations.

building up their rule collections according to the learning strategy applied. (At each point, all

three systems address the same randomly-generated problem.) Statistics are collected as the

systems solve problems and learn. This continues for a fixed number of problems. constituting an

experimental run. However, a single run can be greatly effected by the ordering of the sampleS.
probiems. To provide better estimates of performance. multipie experimental runs are performed.

%J# .At the ;tart of each run. the rules acquired in the previous run are discarded. When completed. the

%4, resuits of all the runs are aeraged together. Unless otherw\ise noted, the data presented in this

section is the result of superimposing 25 experimental runs and averaging In ail of the curves.

sAidid urcles represent data from BAGGER open circles from 4BL. and x's from no-learn.

'.
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Each learning system stores its acquired rules in a linear list. During problem solving, these

rules are tried in order When a rule is successful. it is moved to the front of the list This was.

*less useful rules will migrate toward the back of the list. Analysis of other indexing strategies is

presented in (Shavlik. 1988). where a more comprehensive experimental analysis of EBL is

presented.

This indexing strategy is the reason that, in the goal. tower heights are limited. The sEBL

system would sooner or later encounter a goal requiring four blocks, and a rule for this would

migrate to the front of its rule list. From that time on. regardless of the goal height. a four-block

to',er would be constructed. With a limit on tower heights, the rules for more efficiently building

.V to', ers of lower heights have an opportunity to be tried. This issue would be exacerbated if the

goal was not limited to four-bock towers due to simulation time restrictions.

5.2. Experimental Results

In this section the operation of the two basic modes of operation - autonomous and training

- are analyzed and compared. The autonomous mode is considered first. In this mode. whenever a

system's current collection of acquired rules fails to solve a problem. a solution from first

principles is constrLcted and generalized. Figure 14 shows the probability that the learning systems

will need to resort to first principles as a function of the number of sample problems experienced.

* As more problems are experienced, this probability decreases. (On the first problem the probability

is alwvavs 1.) BAGGER is less likely to need to resort to first principles than is sEBL because

BAGGER produces a more general rule by analyzing the solution to the first problem.

On average. BAGGER learns 1.72 sequential-rules in each experimental run. while sEBL learns

4.28 rules. It takes BAGGER about 50 seconds and sEBL about 45 seconds to generalize a specific

problem's solution. Averaging over problems 26-50 in each run (to estimate the asymptotic

behavior), produces a mean solution time of 3720 seconds for BAGGER, 8100 seconds for sEBL. and

79.300 seconds' for no-learn. For BAGGER, this is a speed-up of 2.2 o-.er sEBL and 21.3 over no-

learn, where speed-up is defined as follows:

Speed-up of .4 over B =mean 5out Uion time for B
mean solution time or .4

One day contain, 86.400 seconds.
b.
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Figure 14. Probability of Resorting to First Principles in Autonomous Mode

Table 3 compares the speed of the three problem solvers over 625 sample problems (25 sample

runs times the last 25 problems of each run). Recall that in each run. the three problem solvers all

address the same problem at each point. The relative speeds of each are recorded and the table

reflects how many times each system is the fastest. second fastest, and the slowest. Hence. no-

learn solves about 20c of the problems faster than the two learning systems and about 60'c of the

problems slower than the other two. BAGGER solves slightly more than half the problems faster

than do the other two systems. Only comparing the two learning systems BAGGER solves

about 70/c of the problems faster than sEBL does.

Table 3 Relative Speed Summary in Autonomous Mode

1st 2nd 3rd

No-Learn 20.2% 22.9 57.0

Std-EBL 24.8 41.6 33.6

BAGGER 55.0 35.5 9.4

BAGGER beats standard EBL. 71.8,
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The numbers in this table only record the order of the three systems, the, do not reflect bv

ho. much one system beats another For example. building towers containing one block is often

slightl,, faster to do from first principles, however towers of multiple blocks can be constructed

much more rapidly by the learning systems. It takes no-leamrn about 10 seconds to build a tower

with one block and 5 x 10 seconds for a tower of four blocks. For BAGGER, these averages are

about 20 seconds and 70 seconds, respectively, for problems solved by its acquired rules. The

performance separation seen in figure 14 is due to the fact that, when averaging numbers that vary

bv seeral orders of magnitude, the largest numbers heavily dominate

Figure 15 plots the number of rules acquired as a function of rroblems experienced. The fact

that the slopes of these curves are continually decreasing indicates that the time between learning

episodes lengthens. which corresponds to the results of figure 14 That is. the mean time between

failures of the acquired rules grows as more problems are experienced.

Figure 16 presents the performance during a single experimental run of the two learning

svstems in the autonomous mode. The average time to solve a problem is plotted, on a logarithmic

scale. againsi the number of sample problems experienced. Notice that the time taken to produce a

Ssolution from first principles dominates the time taken to apply the acquired rules, accounting for

the peaks in the curves

Because the cost of solving a big problem from first principles greatly dominates the cost of

app'1 ing acquired rules, the autonomous mode may not be an acceptable strateg\. Although

KEY
10

-id-EBL

8 BAGGER

p, Rules
Learned

0
5 10 15 20 25 30 35 40 45 50

Sample Problem Number

* Figure 15. Rule Acquisition Comparison of the Autonomous Problem Solvers
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Figure 16. Performance Comparison of the Autonomous Problem Solvers

learning in this mode means many problems will be solved quicker than without learning, the time

occasionallv taken to construct a solution when a system's acquired rules fail can dominate the

performance. The peaks in the right-side of figure 16 illustrate this. A long period may be

required before a learning system acquires enough rules to cover all future problem-solving

episodes without resorting to first principles.

The second learning mode provides an alternative. If an expert is available to provide

solutions to sample problems and an occasional failure to sole a problem is acceptable, this mode

is attractive. Here. a number of sample solutions are provided and the learning systems generalize

these solutions, discarding new rules that are variants5 of others already acquired. After training.

" the systems use their acquired rules to solve new problems. No problem solving from first

princ:ples is performed when a solution cannot be found using a system's acquired rules.

. , The algorithm for detectin , \ariant- determines if tw o rules exactlv m a'ch. ,iven some renam ing of
ariables This means, for instance, that a Ab and b Ac are -iot ariants. Hence. semanticallN equivalent

rule, are not alwavs considered variants. A more sophisticated variant algorithm aould reduce the number
N of sa' ed rules. However if the variant algorithm considered associativitv and commutativity. it would be

much less efficient (Benanav. Kapur. and Narendran. 1985).

.4
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The performance results in the training mode are shown in figure 17. After ten training

problems. the systems solve 20 additional problems. In these 20 test problems, the two learning

systems never resort to using first principles. BAGGER takes. on average, 36 6 seconds on the test

problems (versus 3720 seconds in the autonomous mode). sEBL requires an average of 828 seconds

(versus 8100 seconds), and no-learn averages 68,400 seconds (versus 79.300 seconds)

Since no-learn operates the same in the two modes, these statistics indicate the random draw

of problems produced an easier set in the second experiment. The substantial savings for the two

- learning systems (99% for BAGGER and 90% for sEBL) are due to the fact that in this mode these

systems spend no time generating solutions from first principles. In this experiment. BAGGER has a

speed-up of 22.6 over sEBL (versus 2.2 in the other experiment) and 1870 over no-learn

(versus 23).

The relative speeds of the three systems in the training mode appear in table 4 (Only

statistics from problems where all three problem solvers are successful are used to compute this

*' table. As described later, this is about 98% of the test problems.) These numbers are comparable

with the corresponding table for the autonomous mode. The main difference is that sEBL performs

3 KEY

no-learn

std-EBL o--------o

iO BAGGER

p 10

". 10 4

.- Time r-- trainrig se: -

102 

10

5 10 i5 20 25 30

Sample Problem Number

Figure 17. Performance Comparison of the Trained Problem Solvers
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Table 4 Relative Speed Summary in Training Mode

I 1st 2nd 3rd

No-Learn 20.8% 15.1 64.1

Std-EBL 21.6 47.8 30.7

BAGGER 57.6 37.1 5.2

BAGGER beats standard EBL: '5.4%

worse relative to the other systems (although its absolute performance is about ten times better

,K than in the autonomous mode). The probable reason for this is that in the training mode the

'learning systems acquire more rules than in the autonomous mode.

The number of rules learned as a function of the size of the training set is plotted in figure 18.

As before. BAGGER learns less rules than does sEBL and it approaches its asymptote sooner. Once

%: the training set size exceeds about a half dozen examples. more rules are learned in the training

, mode than from 50 problems in the autonomous mode. This occurs because. during the training

phase, new rules can be learned from problems that some previously-learned rule could have

KEY
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p. Figure 18. Rule Acquisition Comparison of the Trained Problem Solvers
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solved, albeit in a different way than the expert's solution Recall that in the training mode the

expert's solution is immediately given - the systems do not first try to solve the problem ()niv

general rules that are simple syntactic variants of previously-acquired rules are discarded

One of the costs of using the training mode is that occasionally the learning systems . ill not

be able to solve a problem. Figure 19 plots the number of failures as a function of the size ot the

training set. In each experimental run used to construct this figure, 20 test problems are soled

after the training examples are presented. With ten training solutions, both of the systems sol.e

over 98.5% of the test problems.

The final figure in this section, figure 20. summarizes the performance of the three systems in

the two training modes. Note that a logarithmic scale is used. Both of the experiments

demonstrate the value of explanation-based learning and also show the advantages of the BAGGER

system over standard explanation-based generalization algorithms. BAGGER solves 'ost probiems

faster than do the other two systems, its overall performance is better. and it learns less rules than

does sEBL. Comparing the two training modes demonstrates the value of external guidance ;u

learning systems. If a system solves all of its problems on its own. the cost of occasionallN soN' ing

* complicated problems from first principles can dissipate much of the gains from learning. The

remainder of this chapter investigates variants on these experiments, comparing the results to the

data reported in this section.

0 KEN

50% std-EBL

BAGGER
40%

Problems 30%
Unsolved

(%) 20%

10%

1 2 3 4 5 6 7 8 9 10
Number of Training Problems

Figure 19. Failure Comparison of the Trained Problem Solvers
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"-i Figure 20. Performance of the Three Systems in the Two Modes

• "-"5-3. Summary
i . The empirical results presented in this section demonstrate the value of generalizing to . In

."

, the two training strategies investigated. BAGGER performs substantially better than a system that

performs no learning. BAGGER also outperforms a standard explanation-based learning system.

~Other researchers have also reported on the performance improvement of standard EBL

,,'esystems over problem solvers that do not learn (Fikes. Hart. and Nilsson. 1972: -Ninton. 1985:

@: locnev. 1988: O'Rorke. 1987b; Prieditis and Mostow. 1987: Steier. 1987). One major issue is that.

• , as more new concepts are learned, problem-solving performance can decrease. This occurs because

_. substantial time can be spent trying to apply rules that appear promising, but ultimately fail

4..

,, Y i(Minton. 1985: MNooney. 1988). Also, a new broadly -appl icable rule, which can require substantial

, e"time to instantiate. may block access to a more restricted, et often sufficient, rule whse

.preconditions are easier to apply (ShavlikM DeJong. and Ross, 1987). While the non-learning sstem

- ; outperforms the learning systems on some problems in the experiments reported in this secton the

I .
! ° ,,,.overall effect is that learning is beneficial.

-- '-'It mav seem that investigating only tower-building problems unfairly favors explanation-

• based learning. An alternative would be to investigate a more diverse collection of problem types.

[0-
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• -[-oweer. the negative effects of learning are manifested most strongly when the acquired concepts

*are closely related. If the effects of some rule support the satisfaction of a goal. substantial time

can be spent trying to satisfy the preconditions of the rule. If this cannot be done, much time is

wasted. To the sEBL system, a rule for stacking two blocks is quite different from one that moves

four blocks. Frequently a rule that appears relevant fails. For example, often sEBL tries to satisfy

a rule that specifies moving four blocks to meet the goal of having a block at a given height, only to

fail after much effort because all combinations of four blocks exceed the limitations on the tower

height. When the effects of a rule are clearly unrelated to the current goal. much less time is

-%asted. especially if a sophisticated data structure is used to organize rules according to the goals

they support.

The BAGGER algorithm leads to the acquisition of fewer rules, because one of its rules may

subsume many related rules learned using standard EBL. In this section's experiments, this

decreases the likelihood that time will be wasted on rules that appear to be applicable. The

probability that, in the training mode, a retrieved rule successfully solves a problem is 0.595 for

" sEBL and 0.998 for BAGGER Additionailv, fewer training examples are needed for BAGGER to

acquire a sufficient set of new rules These advantages over standard EBL magnify if the range of

k possible tower heights is increased (Shavlik. 19S).

The two training modes demonstrate the importance of external guidance to learning systems.

I. the autonomous mode. the systems must solve all problems on their own. The high cost of doing

this when no learned rule applies dissipates much of the gains from learning. Substantial gains can

"' be achieved by initially providing solutions to a collection of sample problems, and having the

learners acquire their rules by generalizing these solutions. The usefulness of this depends on how

representative the training samples are of future problems and how acceptable are occasional

failures. Again. since BAGGER requires less training examples and produces more general rules. it

* "addresses these issues better than does standard EBL.

6. RELATED WORK

The need to generalize number in EBL was first pointed out in (Shavlik and DeJong. 19h5).

x here the knowledge that momentum is conserved for any A' objects is learned from an example

:noiv ing the coilision of a fixed number of balls. Besides BAGGER. several other explanation-hased

* aprroaches to generalizing number have been recent!% proposed.

Z %. % -
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Prieditis (1986) has developed a system which learns macro-operators representing sequences

4 of repeated STRIPS-like operators. While BAGGER is very much in the spirit of Prieditis work.

STRIPS-like operators impose unwarranted restrictions For instance. BAGGER's use of predicate

calculus allows generalization of repeated structure and repeated actions in a uniform manner In

addition, the BAGGER approach accommodates the use of additional inference rules to reason about

what is true in a state. Everything does not have to appear explicitly in the focus rule For

example. in the stacking problem, other rules are used to determine the height of a tower and that

an object is clear when the only object it supports is transferred. Also instantiations of the focus

rule do not have to directly connect - intervening inference rules can be involved \Xhen

determining that the results of one instantiation partially support the preconditions of another

Prieditis' approach only analyzes the constraints imposed by the connections of the precondition.

add and delete lists of the operators of interest. There is nothing that corresponds to BAGGERs

unwinding operation nor are disjunctive rules learned.

In the FERMI system (Cheng and Carbonell. 1986). cyclic patterns are recognized using

empirical methods and the detected repeated pattern is generalized using expanation-based learning

*techniques. A major strength of the FERMI system is the incorporation of conditionals within the

learned macro-operrtor. However, unlike the techniques implemented in BAGGER. the rules

acquired by FERMI are not fully based on an explanation-based analysis of an example, and so are

not guaranteed to always work. For example. FERMI learns a strategy for solving a set of linear

algebraic equations. None of the preconditions of the strategy check that the equations are linearly

independent. The learned strategy will appear applicable to the problem of determining x and y

from the equations 3x +y = 5 and 6x + 2v = 10 After a significant amount of work. the

strategy will terminate unsuccessfully.

Cohen (1987) has recently developed and formalized another approach to the problem of

generalizing number. His system generalizes number by constructing a finite-state control

mechanism that deterministicailv directs the construction of proofs similar to the one used to

. justif,' .he specific example. One significant property" of his method is that it can generate proof

4' procedures involving tree traversals and nested loops. A major difference between Cohen's method

,0%: and other explanation-based algorithms is that in his approach no "internal nodes" of the

explanation are eliminated during generalization. In other explanation-based algorithms, only the

' leaves of the operationalized explanation appear in the acquired rule. The generalization process

guarantees that all of the inference rules within the explanation apply in the general case. and tie

.. . .... .. ,,.. .. ,.................... ,....,...,......-.. .... ,.,,.,...,,
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final result can be viewed as a compilation of the effect of combining these rules as generally as

possible. Hence. to apply the new rule, only the general .ersions of these leave nodes need be

satisfied. In Cohen's approach. every inference rule used in the original explanation is explicitly

incorporated into the final result. Each rule may again be applied when satisfving the acquired

rule. Hence, there is nothing in this approach corresponding to unwinding a rule from an arbitrary

state back to the initial state, and the efficiency gains obtained b, doing this are no', achieved.

Finally, because the final automaton is deterministic. it incorporates disjunctions only in a limited

way For example, if at some point two choices are equally general. the ordering in the final rule

v will be the same as that seen in the specific example.

A fourth svstem. Physics 101 (Shavlik and DeJong, 1985. 198 7 a: Shavlik 19h8). differs from

the above approaches in that the need for generalizing number is motivated b. an analytic

.ustification of an example's solution and general domain knowledge. This system learns such

.a. concepts as the general law of conservation of momentum (which is applicable to ar arbitrary

collection of objects) by observing and analyzing the solution to a specific three-body colision. In

the momentum problem. information about number, localized in a single physics formula leads to

a global restructuring of a specific solution's explanation. However, Physics 101 is designed to

Ireason about the use of mathematical formulae. Its generalization algorithm takes great advantage

of the properties of algebraic cancellation (e.g.. -i -x =0). To be a broad solution of the

generaization to N problem. non mathematicallv-based domains must also be handled

Another aspect of generalizing the structure of explanations involves general.zirg the

, . (rgani:aran of the nodes in the explanation, rather than generalizing the number o nodes. An

*., approach of this form is presented in (Mooney. 1988). where the tempcral order of acti,.ns is

* -generalized in plan-based explanations. The approach is limited to domains expressed n the

STRIPS-formalism (Fikes and Nilsson. 1971).

The problem of generalizing to .V has also been addressed within the paradigms of similarity

based learning (Andreae. 1984. Dietterich and Michalski. 1983: Dufay and Latombe. 198,4: Holder.

in preparation: Michalski. 1983: Whitehall, 1987: Wolff. 1982) and automatic prograrnming

(Biermann. 197h; Kodratoff. 1979: Summers. 1977: Siklossv and Sykes. 1975) A 7eneral

specification of number generalization has been advanced by Michalski (1983). He proposes a et ;

,eneralizaion rules including a closing intcrval rule and several counting arguments rules which can

generate number-generalized structjres. The difference betw-een such similarity-based approaLfhes

4%
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and BAGGER's explanation-based approach is that the newly formed simliarlt, -based concepts

typicallv require verification from corroborating examples. \x hereas the explanation-based concepts

are immediately supported by the domain theory.

7. SOME OPEN RESEARCH ISSUES

The BAGGER system has taken important steps towards the solution to the "generahzaion

to N problem. However, the research is still incomplete. From the vantage point of the current

rresults, several avenues of future research are apparent.

One issue in generalizing the structure of explanations is that of deciding when there is enough

information in the specific explanation to usefully generalize its structure. Due to the finiteness of

a specific problem. fortuitous circumstances in the specific situation may have allowed shortcuts in

, the solution. Complications inherent in the general case may not have been faced. Hence the

specific example provides no guidance as to how they should be addressed. In BAGGER. the

requirement that, for an application of a focus rule to be generalized, it be viewable as the

arbitrary ith application addresses the problem of recognizing fortuitous circumstances. If there is

not enough information to view it as the ith application, it is likely that some important issue is

not addressed in this focus rule application. However, more powerful techniques for recognizing

fortuitous circumstances need to be developed.

Related to this. BAGGER's method of choosing a focus rule needs improvement. Currenlv the

first detected instance of interconnected applications of a rule is used as the focus rule. However.

there could be several occurrences that satisfy these requirements. Techniques for comparing

alternative tocus rules are needed. Inductive inference approaches to detecting repeated structures

(Andreae. 1984: Dietterich and Michalski. 1983: Dufay and Latombe. 1984: Holder. in preparation:

Weld. 1986; Whitehall. 1987: Wolff. 1982) may be applicable to the generation of candidate focus
- rules, from which the explanation-based capabilities of BAGGER can build.

A second research topic is performing multiple generalizations to N in a single problem.

_ L'pe. allv interesting is interleaved generalizaion to A'. Here. in the final result. each application n
.P 4

an arbitrary length sequence would be supported by another sequence of arbitrary length. In other
,. ords. a portion of the intermediate antecedent of a BAGGER rule would be the antecedents of

_-'_- another BAGGER rule. Learning an interleaved sequential rule from one example may be to

riambitious. A more reasonable approach may be to first learn a simple sequential rule. and then use

-" .". ."%
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"" it in the explanation of a later problem. Managing the interactions betxeen the two RIS's is a

major issue. See Cohen (19h7) for a promis:ng approach to the problem of interlea\.ed

generalization to N.

A third area of future research is to investigate ho\ BAGGER and other such systems might

acquire accessory inter-situational rules, such as frame axioms, to complement their composite

rules. Currently each of BAGGER's new sequential inference rules spectfies how to achieve a goal

.* involving some arbitrary aggregation of objects by applying some number of operators. These rules

* are useful in directlv achieving goals that match the consequent. but do not effectively improve

BAGGER s back-chaining problem-solving ability. This is because currentl BAGGER does not

construct ne,% frame axioms for the rules it learns. (This problem is not specific to generalizing

to A Standard EBL algorithms must also face it when dealing with situation calculus.)

There are se\eral methods of acquiring accessory rules. They can be constructed directly by

combining the accessory rules of operators that make up the sequential rule. This may be

intractable as the number of accessory rules for initial operators may be large and they may

increase cembinatoriallv in sequential rules. Another, potentially more attractive. approach is to

i treat the domain theory, augmented by sequential rules. as intractable Since the accessory rules

for learned rules are derivable from existing knowledge of initial operators, the approach in (Chien.

- 1987) might be used to acquire the unstated but der:,able accessory rules ',rhen the'y are needed.

Investigating the generalization of operator application orderings within learned rules is a

fourth opportunity for future research. Currently, in the rules learned by the BAGGER algorithm.

the order interdependence among rule applications is specified in terms of sequences of vectors.

o loever. this is unnecessarily constraining. When valid, these constraints should be specified in

terms cf jets or bagsb of vectors. This could be accomplished by reasoning about the semantics of

the system s predicate calculus functions and predicates. Properties such as symmetry.

transitic it',. and reflexivity may help determine constraints on order independence.

It a set satisfies a learned rule's antecedents, then arY sequence derived from that set suffices.

Conversely. if the vectors in a set fail to satisfy a rule's antecedents, there is no need to test each

permutation of the elements. Lnfortunately. testing all permutations occurs if the antecedents are

,nnecessar~lv expressed in terms of sequences. I or example. assume the task at hand is to finu

A ;az or multi-set :s an ,-o-ie-ea collection of clement in A' hich an elnirent can appear more than oncc.

%N
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enough heavy rocks in a storehouse to serve as ballast for a ship. A sequential rule may first add

the weights in some order find out that the sum weight of all the rocks in the room is insufficient.

*. and then try another ordering for adding the Nxeights A rule specified in terms of sets would

- terminate after adding the weights once.

A fifth area of future research involves investigating the most efficient ordering of conjunctive

goals. Consider an acquired sequential rule which builds towers of a desired height, subject to the

constraint that no block can be placed upon a narrower block. The goal of building such towers is

. coniunctive: the correct height must be achieved and the width ot the stacked blocks must be

monotonicallv non-increasing. The optimal ordering is to select the blocks subject only to the

height requirement and then sort them by size to determine their position in the tower. The reason

- this works is that a non-increasing ordering of widths on an\ set ol blocks is guaranteed so that no

additional block-selection constraints are imposed by this conjunct. The system should ultimately

* detect and exploit this kind of decumposability to improve the efficiency of the new rules.

Satisfying global constraints poses a sixth research problem. The sequential rules investigated

in this chapter are all incremental in that successive operator applications converge toward the goal

achievement. This is not necessarily the case for all sequential rules. Consider a sequential rule for

unstacking complex block structures subject to the global constraint that the partially dismantled

structure always be stable. Removing one block can drastically alter the significance of another

- block with respect to the structure's stability. For some structures. only the subterfuge of adding

a temporary support block or a counter-balance will allow unstacking to proceed. A block may be

,. safe to remove at one point but be essential to the over-all structural stability at the next. even

though the block actually removed ,as physically distant from it. Such non-incremental effects

are difficult to capture in sequential rules without permitting intermediate problem-solving within

the rule execution.

The RIS. besides recording the focus rule's variable bindings, is used to store intermediate

calculations, such as the height of the tower currently planned. Satisfying global constraints may
0.

require that the information in an RIS vector increase as the sequence lengthens. For example.

%. assume that each block to be added to a tower can only support some block-dependent weight. The

RIS may have to record the projected weight on each block .hile BAGGR plans the construction of

a tower. Hence. as the sequence lengthens. each successive vector in the RIS will have to record

information fcr one additional block. F:gurativelv speaking, the RIS ,\iil be getting longer and

% %
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a

v- ider. The current BAGGER algorithm does not support this

UOften a repeated process has a closed form solution. For example, summing the first A

integers produces \  There is no need to compute the intermediate partial summations A

recurrence relation is a recursive method for computing a sequence of numbers Recognizing and

solving recurrence relations during generalization is a seventh area for additional research.OR
Man- recurrences can be solved to produce efficient ways to determine the ru.h result in a

sequence. It is this property that motivates the requirement that BAGGERs preconditions be

expressed solely in terms of the initial state. However. the rule instantiation sequence still holds

intermediate results. While often this information is needed (if. for instance, the resulting

sequence of actions is to be executed in the external world). BAGGER would be more efficient if it

could produce. whenever possible, number-generalized rules that did not require the construction

of an RIS. If BAGGER observes the summation of, say, four numbers it will not produce the

efficient result mentioned above. Instead it will produce a rule that stores the intermediate

s mnations in the RIS. One extension that could be attempted is to create a library of templates

for soluble recurrences. matching them against explanations. A more direct approach would be

3 more appealing. Weld's (1986) technique of aggregation ma-N be a fruitful approach. Aggregation

is an abstraction technique for creating a continuous description from a series of discrete events.

N'- The issue of termination is an eighth research area One important aspect of generalizing

number is that the acquired rules may produce data structures whose size can grow without bound

( for example. the rule instantiation sequence in BAGGER) or the algorithms that satisf,, these rules

may fall into infinite loops (Cohen. 1987). Although the halting problem is undecidable in general.

in restricted circumstances termination can be proved (Manna, 1974). Techniques for proving

termination need to be incorporated into systems that generalize number. A practical. but less

appealing, solution is to place resource bounds on the algorithms that apply number-generalized

ru'es (Cohen, 1987). potentially excluding successful applications.

Finally, it is important to in.estigate the generalization to N problem in the context of

innerfec, and intractable domain models (Mitchell. Keller. and Kedar-Cabelli. 1986: Raiamone'

and DeJong. 1987). In an\ real-world domain, a computer system's model can only approximate

reality. Furthermore. the complexity of problem sol'ing prohibits any semblance of completeness.

fAThus far BAGGER's sequential rules have relied on a correct domain model, and it has not addressed

iss'es of intractability, other than the use of an outside expert to provide sample solutions , hen

% %
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the construction of solutions from first principles is intractable

8. CONCLUSION

Most research in explanation-based learning involves relaxing constraints on the variables in

an explanation. rather than generalizing the number of inference rules used. This article presents

an approach to the task of generalizing the structure of explanations. The approach relies on a shift

in representation which accommodates indefinite numbers of rule applications. Compared to the

results of standard explanation-based algorithms, more general rules are acquired. and since less

rules need to be learned, better problem-solving pertormance gains are achieved.

To illustrate the approach. a situation calculus example from the blocks world is analzed.

This leads to a plan in which the number of blocks to be placed in a tower is generalized to .N. In

e. *this example. the system observes three blocks being stacked upon one another, in order to satisfy

- the goal of having a block located at a specified height. Initially. the system has rules specifying
m. *

how to transfer a single block from one location to another. and how the horizontal and vertical

position of a block can be determined after is is moved. By analyzing the explanation of how

moving three blocks satisfies the desired goal. BAGGER learns a new rule that represents how an

unconstrained number of block transfers can be performed in order to satisfy future related goals.

The fully-implemented BAGGER system analyzes explanation structures (in this case.

predicate calculus proofs) and detects repeated. inter-dependent applications of rules. Once a rule

on which to focus attention is found, the system determines how an arbitrary number of

instantiations of this rule can be concatenated together. This indefinite-length collection of rules is

conceptually merged into the explanation, replacing the specific-length collection of rules, and an

extension of a standard explanation-based algorithm produces a new rule from the augmented

explanation.

% Rules produced by BAGGER ha,,e the important property that their preconditions are

expressed in terms of the initial state - the> do not depend on the situations produced by

intermediate applications of the focus rule. This means that the results of multiple applications of

the rule are determined b%, reasoning only about the current situation. There is no need to appl.

the rule successively, each time checking if the preconditions for the next application are satisfied.

* The specific example guides the extension of he focus rule into a structure representino, an

arb itrar' number of repeated applications. Information not contained ;n the :ocus rule, hut

1
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. appearing in the example, is often incorporated into the extended rule. In particular, unwindable

rules pro% ide the guidance as to how preconditions of the &:,-i application can be specified in terms of

the current state.

A concept involving an arbitrary number of substructures may involve any number of

substantially different problems. However a specific solution will have necessarily only addressed

a finite number of them. To generalize to A. a system must recognize all the problems that exist in

the general concept and. by analyzing the specific solution, surmount them. If the specific solution

"- does not provide enough information to circumvent all problems, generalization to N cannot occur

.because BAGGER is designed not to perform any problem-solving search during generalizatLion.

\\ hen a specific solution surmounts. in an extendible fashion a sub-problem in different ways

during different instantiations of the focus rule, disjunctions appear in the acquired rule.

An empirical analysis of the benefit of generalizing the structure of explanations has been

pertormed. These experiments ,ndicate a performance improvement of at least an order of

* " magmniude over standard explanation-based algorithms and several orders of magnitude over a

pr.,biem sol'.er that does not learn.

K Generalizing to V is an important property currently lacking in most explanation-based

s. -Tems This research contributes to the theorv and practice of explanation-based learning b,

,e-eiop:rlg and testing methods for extending the structure of explanations during generalization.

It brings ,his field of machine learning closer to its goal of being able to acquire the full concept

inherent in the solution to a specific problem.
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APPENDIX: THE INITIAL INFERENCF RL IES

The inference rules used in the tower-building (stacking) example are presented in this

appendix. Not all the rules in the system are presented. Howeer. a complete collection of the

rules can be found in (Shavlik. 1988). The first table contains those rules that describe irura-

situation inferences, while inter-situation inferences appear in the secend table. The first rule in

the second table is the definition of the transfer action This rule is the /,ocu3 rde of the stacking

example. (The construct 17a ?b} matches a list with head 'c and tail 2b. For example, it matched

-,'ith {x.v.zk 9a is bound to x and ?b to {y.:}.)

.,Table A.I. Intra-Situation Rules Used in the Stacking Example

Rule Description

Clear("x.(s) If an object is clear and has a flat top. space is
Frpeerpc(yc.1)-"FlatTop(?x) available.

Clear(?x.?s)
Liftable(?x.?s) A block is liftable if it is clear.

Block(?x)

'-Box( 1 x) FlatTop(?x) Boxes have flat tops.

Table(?x) FlatTop(?x) i Tables have flat tops.

Box('x) - Block(?x) Boxes are a type of block.

Supports(?x.)6's) - Clear(?x.?s) An object is clear if it is supporting nothing.

"?x - " x Inequality is reflexive.

x ?y If two objects are distinct. and the first is not in

* NotMember("x.?bag) a collection of objects. then the first is not a
- member of the collection that results from

NotMember('x.Py ?baOg) adding the second ob)ect to the original
collection.

Not.Member('x.6) Nothing is a member of the empty set.

l ember( x.{x} Everything is a member of the singleton se:
containing it.

RemoeFromBag('xTl% .bag!,.h)ag) Remove this obiect from a collection of objects.
producing a nev. cclection o objects

S..
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Table A.2. Inter-Situation Rules Used in the Stacking Example

Rule Description

AchievableState(,s) If the top of an object is clear in some
Lif table("x. s) achievable state and there is free space on
FreeSpace(?y. " s) another object. then the first object can be

9 moved from its present location to the ne
location. However. an object cannot be

Achie\ ableState(Do(Transfer("x 'v)."s)) moved onto itself loing creates a nev,
Clear(' x,Do(Transfer(x, v).?s)) state in Nxhich the moved object is still clear
On( x..,DokTransfer(?x.?v)."s)) but (possibly) at a ne% location-

Xpos( y. xpos.?s) After a transfer the object moved is centered
-( in the X-direction) on the object upon which

Xpos( x.'xpos.Do(Transfer(x ,'.v),s)) it is placed.

He:gnt( x."hx) After a transfer the Y-position of the object
Ypos( .1  pos.,s) moved is determined b, adding its height to
' pos2 - (_hx * 1vpos) the I -pos~tion of the object upon which it is

placed
Ypos("x .'v pos2 .Do(Transfer(?x,?v),"s))

Sapports(?u.items.?s) If an object neither supports the moved object

before the transfer. nor is the ie, supporter.
"- then the collection cf objec*.s it supports

Suports(?u ." items.Do(Transfer("x.?v ) remains unchanged.

Supports(u.?items.?s) If an object is not the ne. , support of the
moved object. but supported it before the

-Iembe"r('~x,"items transfer, then the moved object must be
removed from the collection of obiects being

Supports(u 2ne, .Do(Transfer( 'x.?v )2sX supported.

..,
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